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1. Introduction

The distinctive feature of the interquark potential in a confining gauge theory is that the

colour flux is confined into a thin flux tube, joining the quark-antiquark pair. The quantum

fluctuations of this flux tube can be well described by an effective string model. The most

famous result of this model is the well known “Lüscher term” which was predicted more

than 25 years ago [1, 2] and was recently observed in high precision montecarlo simulations

of lattice gauge theories (LGTs) both in (2+1) and in (3+1) dimensions with gauge groups

ranging from Z2 to SU(N) [3 – 6, 15, 7 – 14].

Another well known prediction of the effective string theory is the logarithmic increase

of the width of the flux tube as a function of the interquark distance R. This behaviour

was predicted many years ago by Lüscher, Münster and Weisz in [16] and subsequently

observed in various different models, ranging again from SU(2) to Z2 and to the pure

gauge percolation model [15, 17 – 22]. Together with the linear rising of the interquark

potential it has always been considered as one of the distinctive features of the confining

regime in LGTs.

A natural question is what happens of the flux tube width as the deconfinement tem-

perature is approached from below. According to the above picture one would naively

expect that the log behaviour should hold in the whole confining phase. However we shall
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show in this paper that this is not the case. More precisely, we shall show by means of

high precision montecarlo simulations in the (2+1) dimensional Z2 gauge model, that the

flux tube width also depends on the finite temperature of the theory and that near the

deconfinement temperature (but still in the confining phase) the flux tube width increases

linearly (and not logarithmically!) as a function of R.

As we shall see, this result is in perfect agreement with the effective string picture

which indeed predicts a logarithmic increase at low temperature but shows a much more

complex behaviour as the temperature increases and ultimately leads, as the deconfinement

temperature is approached, to the linear behaviour observed in the simulations.

This paper is organised as follows. In section 2 we define the flux tube thickness and

discuss its evaluation in the framework of the effective string model both at zero and at

finite temperature. In section 3 we present our montecarlo simulation while in section 4

we discuss our results and compare them with the effective string predictions. Section 5 is

devoted to a few concluding remarks.

2. Effective string prediction for the flux tube thickness

2.1 Definition of the flux tube thickness

The lattice operator which is commonly used to evaluate the flux at zero temperature

through a plaquette p of the lattice is:

〈φ(p;W )〉 =
〈W Up〉
〈W 〉 − 〈Up〉 (2.1)

where W denotes a Wilson loop while Up denotes the operator associated with the

plaquette p.

In a finite temperature setting we must substitute the Wilson loop with a pair of

Polyakov loops. The lattice operator becomes in this case:

〈

φ(p;P,P ′)
〉

=

〈

PP ′† Up

〉

〈PP ′†〉 − 〈Up〉 (2.2)

where P , P ′ are two Polyakov loops separated by R lattice spacings.

Within this setting the flux 〈φ(p;P,P ′)〉 depends on the spacelike coordinates of the

plaquette, on its orientation, on the separation R of the Polyakov loops and on the length L

of the lattice in the timelike direction. It does not depend on the timelike coordinate of the

plaquette. Different possible orientations of the plaquette p measure different components

of the flux. In the following we shall neglect this dependence which plays no role if one is

interested in the R dependence of the flux tube width. Furthermore, since we are mainly

interested in the tube width half way between the two quarks, we restrict the plaquette to

lie on the symmetry (hyper)plane half way between the two Polyakov loops. Under these

conditions we have:
〈

φ(p;P,P ′)
〉

=
〈

φ(~h;R,L)
〉

– 2 –
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where ~h denotes the displacement of p from the P P ′ plane. Along each of the directions

spanned by ~h, the flux density shows a gaussian like shape (see for instance figure 2 of [18]).

The width of this gaussian is the quantity which is usually denoted as “flux tube thickness”:

w2(R,L) =

∑

~h
~h2

〈

φ(~h;R,L)
〉

∑

~h

〈

φ(~h;R,L)
〉 (2.3)

This quantity only depends on the interquark distance R and on the lattice size in the

compactified timelike direction L, i.e. on the inverse temperature of the model. By tuning

L we can thus study the flux tube thickness near the deconfinement transition.

2.2 Effective string model for the interquark potential

The starting point of the effective string description of the interquark potential is to model

the latter in terms of a string partition function:

〈

PP ′†
〉

=

∫

[Dh] e−Seff ≡ Z(R,L) , (2.4)

where Seff denotes the effective action for the world sheet spanned by the string. In (2.4),

the functional integration is done over world sheet configurations which have fixed bound-

ary conditions along the space-like direction, and periodic boundary conditions along the

compactified, time-like direction (the Polyakov lines are the fixed boundary of the string

world sheet).

The simplest and most natural string model is the Nambu-Goto one, which assumes

the string action Seff to be proportional to the area spanned by the string world sheet:

Seff = σ

∫

dτ

∫

dς
√

g , (2.5)

where g is the determinant of the two-dimensional metric induced on the world-sheet by

the embedding in R
d and σ is the string tension, which appears as a parameter of the

effective model.

Eq. (2.5) is invariant with respect to reparametrization and Weyl transformations. The

standard choice to deal with these symmetries is to choose the so called “physical gauge”

(see [23] for more details) in which g becomes a function of the transverse displacements of

the string world-sheet only. These displacements (which we shall denote in the following

as hi(ς, τ) are required to satisfy the boundary conditions relevant to the problem — in

the present case, periodic b.c. in the compactified direction and Dirichlet b.c. along the

interquark axis direction:

hi(τ + L, ς) = hi(τ, ς); hi(τ,−R/2) = hi(τ,R/2) = 0 . (2.6)

As it is well known, this gauge choice is anomalous1: rotational symmetry is broken at the

quantum level unless the model is defined in the critical dimension d = 26. However, this

1Another way to understand this anomaly is to notice that this gauge fixing implicitly assumes that

the world-sheet surface is a single-valued function of (τ, ς), i.e. overhangs, cuts, or disconnected parts are

excluded.
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anomaly is known to vanish at large distances [24], and this suggests to use the “physical

gauge” for an IR, effective string description also for d 6= 26.

If we restrict our attention to the d = 2+1 case a further simplification occurs since only

one transverse degree of freedom (h) survives and the cross-interactions terms among dif-

ferent transverse degrees of freedom disappear. In the physical gauge, (2.5) takes the form:

S[h] = σ

∫ L/2

−L/2
dτ

∫ R/2

−R/2
dς

√

1 + (∂τh)2 + (∂ςh)2 . (2.7)

Since we expect this model to be correct in the large R limit the standard way to deal

with the square root term in the action is to perform a large R expansion in powers of the

dimensionless quantity (σRL)−1.

S[h] ∼ σLR +
σ

2

∫ L/2

−L/2
dτ

∫ R/2

−R/2
dς (∇h)2 + O

(

(σLR)−1
)

, (2.8)

The first term is the classical contribution, it simply gives the area term in the in-

terquark potential and we shall neglect it in the following. The second term is a stan-

dard gaussian action while the higher order O((σRL)−1) contributions encode string

self-interactions.

If we neglect in the expansion the string self-interaction terms (the so called “gaussian

approximation”), then using standard results of 2d conformal field theory (CFT) the par-

tition function of the effective string model can be evaluated exactly leading to the well

known Lüscher term. With some more effort also higher order terms (and in particular the

quartic self-interaction term written above) can be evaluated [25]

The resulting predictions have been compared with Montecarlo simulations of Polyakov

loop correlators for different gauge theories in the last few years, showing a very good

agreement at large distances and an increasing disagreement as smaller distances and/or

higher temperatures (i.e. smaller values of L) were approached (see for instance [8])

2.3 The effective string width in the gaussian approximation

The effective string approach allows to compute the flux tube width according to the

following definition:

w2(x;R,L) =

∫

C
[Dh]hi(t, x)hi(t, x)e−S[h]

∫

C
[Dh] e−S[h]

where the sum is intended (as in the previous section) over all the surfaces bordered by

the to Polyakov loops. Since the b.c. are periodic in the timelike direction, there is no

dependence on t, and on setting x = 0, i.e. half way between the two Polyakov loops, we

obtain the effective string prediction for the flux tube as defined in (2.3).

The action S[h] should be in principle the whole Nambu-Goto action (2.7), but, as

anticipated, we shall truncate it to its gaussian approximation (2.8). In this way the width

becomes a correlator in a 2d free bosonic theory:

w2(x;R,L) =
〈

hi(t, x)hi(t, x)
〉

– 4 –
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This correlator is singular and must be regularized. The most natural choice is a point

splitting regularization:

w2(x;R,L) =
〈

hi(t, x)hi(t + ǫ, x + ǫ)
〉

In fact, in the original lattice description, the flux density is evaluated using a plaque-

tte operator which has an intrinsic size of the order of the lattice spacing. This ultraviolet

scale is translated in the effective string description in the ǫ parameter of the point split-

ting regularisation.

The correlator in (2.3) can be evaluated exactly (see the appendix). One can then

perform an expansion in ǫ of the result. As expected the first term diverges logarithmically

while the remaining is finite and describes the dependence of the result on the modular

parameter L/R of the cylinder.

It is important at this point to distinguish the two regimes: low and high temperature.

• At low temperature, i.e. in the regime in which L ≫ R the flux tube width in the

gaussian approximation is given by:

σw2(z) = − 1

2π
log

π|ǫ|
2R

+
1

2π
log

∣

∣θ2 (π Re z/R) /θ′1(0)
∣

∣ (2.9)

q = e−πL/2R

where (as discussed in the appendix) we use a complex coordinate z to describe the

cylinder bordered by the two Polyakov loops (with Re z representing the spacelike

direction and Im z the timelike one) which are fixed in the positions Re z = ±R/2.

Setting Rc = π|ǫ|/2 we see that the dominant term is:

σw2(z) =
1

2π
log

R

Rc
(2.10)

as we anticipated, while the next to leading correction in the L ≫ R limit turns out

to be:
1

2π
log

∣

∣

∣

∣

cos

(

π Re z

R

)∣

∣

∣

∣

which vanishes if we choose z = 0.

• In the opposite regime L ≪ R (i.e. high T, but still in the confining phase) the flux

tube width has a very different expression:

σw2(z) = − 1

2π
log

π|ǫ|
L

+
1

2π
log

∣

∣θ4(2πiRe z/L)/θ′1(0)
∣

∣ +
(Re z)2

LR
(2.11)

q = e−2πR/L

This can be obtained by a modular transformation of the previous result or by direct

calculation (see the appendix). In this case in the R ≫ L limit the dominant term

turns out to be proportional to log L instead of log R and the (linear) R dependence

– 5 –
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only appears in the first subleading correction. In fact setting z = 0 and using the

relation:

θ′1(0) = θ2(0)θ3(0)θ4(0)

we obtain:

σw2(z) = − 1

2π
log

π|ǫ|
L

− 1

2π
log |θ2(0)θ3(0)| .

Expanding this expression in powers of q = e−2πR/L and setting Lc = π|ǫ| we find 2:

σw2(z) =
1

2π
log

L

Lc
+

R

4L
− 1

π
e−2π R

L + · · · (2.12)

This is the major result of this section and we shall devote the next sections to a check

of this prediction with a set of high precision Montecarlo simulations.

3. Montecarlo simulations

Testing the logarithmic growth of the flux tube width with Montecarlo simulations is a

very difficult task since it requires to study very large Wilson loops (or Polyakov loop

correlators) and to control the statistical errors induced by the ratio of expectation values

of (2.2)

Both these problems can be solved if one studies abelian LGTs for which a duality

transformation can be implemented. In particular, for three dimensional LGTs, the dual

model turns out to be a spin model. As discussed in [18] in this case one can study

Polyakov loop correlators of arbitrary size by simply frustrating the links (in the dual

lattice) orthogonal to the surface bordered by the Polyakov loops. The expectation value

of the energy operator (which is dual to the plaquette of the original gauge theory) in this

environment directly corresponds to the ratio of expectation values of (2.2) thus solving at

the same time also the second problem mentioned above.

This strategy was adopted in [18] to study the thickness of flux tubes generated by

Wilson loops in the 3d gauge Ising model finding a perfect agreement with the predictions of

the gaussian approximation discussed above. By choosing different couplings and different

Wilson loop sizes the authors of [18] were able to test the log growth over a range of more

than two orders of magnitude.

The present paper can be considered as a natural continuation of the above analysis

in the case of the Polyakov loop geometry which, as mentioned above, allows to introduce

into the analysis also the finite temperature scale and allows to study the crossover from a

log to a linear growth of the flux tube thickness.

We report here for completeness a few details on the gauge Ising model, on the algo-

rithm that we used and on the parameters that we used in our simulations.

2Notice a misprint in the analogous expression reported in [28] where the linear coefficient was erroneously

quoted to be 1/6 instead of 1/4.
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3.1 The gauge Ising model

The 3D ZZ2 gauge model on a cubic lattice is defined through the partition function:

Zgauge(β) =
∑

{σl=±1}

exp (−βS) , (3.1)

where the action S is a sum over all the plaquettes of the cubic lattice:

S = −
∑

�

σ� , σ� = σl1σl2σl3σl4 . (3.2)

This model can be translated into the usual 3D Ising model by the Kramers-Wannier

duality transformation:

Zgauge(β) ∝ Zspin(β̃) (3.3)

β̃ = −1

2
log [tanh(β)] , (3.4)

where Zspin is the partition function of the Ising model on the dual lattice:

Zspin(β̃) =
∑

si=±1

exp(−β̃H(s)) , (3.5)

with:

H(s) = −
∑

〈ij〉

J〈ij〉sisj (3.6)

where i and j denote nodes of the dual lattice and the sum is extended to the links 〈ij〉
connecting the nearest-neighbour sites. For the moment the couplings J〈ij〉 are all chosen

equal to +1 .

Using the duality transformation it is possible to build up a one-to-one mapping of

physical observables of the gauge system onto the corresponding spin quantities. For in-

stance, the vacuum expectation value of Polyakov loops correlator can be expressed in

terms of spin variables as follows. First, choose an arbitrary surface Σ bounded by the

two Polyakov loops; then “frustrate” the links of the dual lattice intersecting Σ, i.e. take

J〈ij〉 = −1 whenever 〈ij〉∩Σ 6= ∅. Let us denote with H ′(s) the Ising Hamiltonian with this

choice of couplings: the new Ising partition function Z ′
spin(β̃) =

∑

si=±1 exp
(

−β̃H ′(s)
)

de-

scribes a vacuum modified by the two Polyakov loops, which we shall call the P-vacuum.

It is easy to see at this point that, thanks to duality we can write the expectation value of

the Polyakov loops correlator as:

〈

PP ′†
〉

=
Z ′

spin

Zspin
=

〈

∏

〈ij〉∩Σ 6=∅

exp(−2β̃sisj)

〉

spin

, (3.7)

where the product is over all the dual links intersecting Σ.

Similarly it is easy to see that:

< PP ′†Up >

< PP ′† >
= 〈exp(−2β̃sksl)〉P (3.8)

– 7 –



J
H
E
P
0
1
(
2
0
0
9
)
0
7
3

PP

Ε Hnx, ny, nzL

nx

ny

Figure 1: Schematic view of the simulation setting. The vertical bonds along the horizontal axis

represent the frustrated links between the two Polyakov loops. The isolated bold face link represents

the (dual of) plaquette operator.

where sksl is the link dual to the plaquette Up(x) and < >P denotes a mean value in the

P-vacuum.

In this way we can immediately obtain the flux density by simply looking at the mean

value of the (dual of the) plaquette in the model in which all the links dual to Σ are

frustrated (see fig 1).

More precisely we have:

〈

φ(p, P, P ′)
〉

= 〈Up〉P − 〈Up〉 (3.9)

3.2 Simulation setting

We simulated the Ising model (both with and without frustrations) with a standard

Swendsen-Wang algorithm. We chose to measure the flux with a plaquette parallel to

the surface joining the two Polyakov loops (i.e. in the dual lattice, looking at the product

of the spins joined by a link orthogonal to such surface, see figure 1). We directly evaluated

from the simulations the flux tube thickness and used a jackknife procedure to estimate

the statistical errors. We performed all the simulations on a lattice of size 80 × 80 × L.

We chose β = 0.75180 for which the deconfinement transition is known to be located ex-

actly at L = 8 [26]. Another reason for this choice is that for this value of β the string

tension is known with very high precision (see [10]) σ = 0.0105255(11). We extracted

the flux tube width for values of the interquark distance R ranging 3 from 5 to 50 and for

L ∈ {9, 10, 11, 12, 14, 16}, i.e. for values of the ratio T/Tc (Tc being the critical temperature)

ranging from T/Tc = 1/2 to T/Tc = 8/9.

3Due to the finite extent of the lattice size in the space directions (L = 80) we expect finite size corrections

to become important for R > 50. In order to check this expectation we simulated for one L value: L = 10

also a few values of R larger than 50.

– 8 –
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0 10 20 30 40 50 60 70
0

100

200

300

400

R

w
2

L=
9

L=
10

L=11 L=12

L=14
L=16

Lattice 80´80´L

J=0.75180

Lcr=8

Finite size

Figure 2: Flux tube thickness as a function of the interquark distance for various values of the

inverse temperature L.

L R w2 L R w2 L R w2

9 4 36.6(2.4) 10 4 24.9(2.0) 11 4 20.0(2.3)

9 8 64.8(2.6) 10 8 41.4(1.8) 11 8 35.2(2.0)

9 12 93.0(2.5) 10 12 62.2(1.7) 11 12 49.9(1.3)

9 16 119.0(2.4) 10 16 82.8(1.6) 11 16 64.6(1.8)

9 20 145.8(2.3) 10 20 100.6(1.6) 11 20 80.0(1.7)

9 24 173.6(2.3) 10 24 124.9(1.6) 11 24 95.1(1.7)

9 28 200.3(2.0) 10 28 140.4(1.4) 11 28 109.1(1.7)

9 32 226.0(2.0) 10 32 161.7(1.4) 11 32 123.7(1.6)

9 36 246.1(2.0) 10 36 179.9(1.4) 11 36 141.2(1.6)

9 40 271.0(1.9) 10 40 200.1(1.3) 11 40 156.7(1.6)

9 44 296.2(1.9) 10 44 217.7(1.3) 11 44 171.2(1.6)

9 48 315.6(1.9) 10 48 240.8(1.3) 11 48 190.0(1.4)

9 52 342.9(1.8) 10 52 263.4(1.3) 11 52 209.8(1.4)

10 56 287.8(1.7)

10 60 320.7(2.3)

10 64 353.9(2.6)

Table 1: Results of the simulations: the square width w2 as a function of R and L

4. Results

We report the results of our simulations in table 1 and table 2. The same data are plotted

in figure 2.

Looking at figure 2, it is easy to see that, in agreement with our effective string

– 9 –
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L R w2 L R w2 L R w2

12 5 20.9(1.6) 14 5 17.9(1.9) 16 5 17.3(1.8)

12 9 34.7(1.3) 14 9 27.7(1.7) 16 9 26.9(1.6)

12 13 44.3(1.3) 14 13 37.8(1.7) 16 13 34.0(1.6)

12 17 59.7(1.2) 14 17 45.6(1.6) 16 17 42.4(1.4)

12 21 69.1(1.2) 14 21 55.0(1.6) 16 21 48.6(1.4)

12 25 83.8(1.2) 14 25 66.7(1.4) 16 25 57.9(1.3)

12 29 95.5(1.6) 14 29 72.4(1.4) 16 29 63.9(1.3)

12 33 107.7(1.6) 14 33 82.2(1.4) 16 33 71.5(1.3)

12 37 122.4(1.6) 14 37 92.6(1.4) 16 37 77.1(1.3)

12 41 131.9(1.6) 14 41 101.6(1.4) 16 41 85.2(1.3)

12 45 144.4(1.6) 14 45 111.3(1.4) 16 45 94.1(1.3)

12 49 160.1(1.6) 14 49 122.2(1.4) 16 49 101.1(1.3)

Table 2: Same as table 1

L k(L) c(L) k0 σ χ2
r

9 6.19(10) 23.0(3.2) 0.587(16) 4.48(7) × 10−3 2.6

10 4.90(4) 4.1(1.5) 0.516(5) 5.10(5) × 10−3 1.2

11 3.85(4) 2.6(1.2) 0.446(4) 5.90(6) × 10−3 0.8

12 3.14(4) 4.4(1.2) 0.397(5) 6.63(8) × 10−3 1.1

14 2.33(3) 6.3(1.2) 0.344(5) 7.64(11) × 10−3 0.7

16 1.84(3) 10.6(9) 0.309(4) 8.50(12) × 10−3 0.5

Table 3: Results of the fit w2 = k(L)R + c(L) for various values of L. In the fifth column we also

report the values of the string tension σ extracted from k(L).

calculations, the data for L > 9 show a very nice linear behaviour as a function of R in

the range 10 < R < 50. The data for R > 50 show deviations due to finite size effects. We

performed a linear fit of the data in the range 10 < R < 50 with the law:

w2 = k(L)R + c(L); k(L) =
k0

σL
(4.1)

where, according to the effective string calculation, we should have k0 = 1/4 The results

are reported in table 3.

A few comments are in order on these fits:

1) We used the following criteria to fix the range of values of R used in the fits. In order

to fix the upper bound we performed a set of preliminary fits for the L = 10 data

keeping initially all the data and then iteratively discarding the largest ones looking

for an acceptable χ2
r (i.e. a reduced χ2 of order unity). In this way we identified as

upper bound R = 50. For the lower bound we used the same criterion adopted in

previous works on effective string corrections which assumed the effective string to

be a reliable description of the interquark potential for scales R such that σR2 ≥ 1.

In our case this means R ≥ 10. Looking at (2.12) we see that with this choice the
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first subleading correction exp−2π R
L turns out to be negligible within the statistical

errors for all the values of R and L involved in the fits.

2) The linear fits show a reduced χ2
r of order unity for all the values L > 9 Also the

data at L = 9 show a linear like behaviour (see figure 2) which is however shadowed

by rather large fluctuations. It is difficult to decide if this is the signature of a

failure of the effective string picture or if the fluctuations are simply due to vicinity

of the critical temperature. In any case we decided to neglect the L = 9 data in the

subsequent steps of our study.

3) We can compare the values of c(L) extracted from the fits with the effective string

prediction:

c(L) =
1

2πσ
log

L

Lc
(4.2)

We fitted the data for L ≥ 10 with the law:

c(L) = a log L + b

finding a = 17(4) and b = −38(9) with a rather good value of χ2
r = 1.6. This

result turns out to be in remarkable agreement with the effective string prediction:

a = 1/2πσ = 15.12 . . . (obtained assuming σ = 0.0105241).

4) Looking at table 3 we see that the values of k(L) show a L dependence different

from the one predicted by the effective string. However the values that we obtain

from the fits smoothly converge toward the predicted one as L increase. This can be

appreciated looking at the fourth column of table 3 where we reported the values of

k0 extracted from the fits assuming σ = 0.0105241 which should be compared with

the effective string prediction k0 = 1/4. For future utility we also reported in the

fifth column of the table the values which we would predict for the string tension if

we would fix k0 = 1/4 in the fits. These values are plotted in figure 3.

4.1 Discussion

The above analysis shows that our data are in substantial agreement with the effective

string predictions at large values of R and L. At the same time however we see an in-

creasing disagreement as R and L decrease. This is indeed an usual phenomenon when

effective string predictions are compared with LGT data and points to the well known

fact that the effective string only represents a large distance effective description of the

interquark potential.

We see two main sources of disagreement. The first one, which we already discussed

above, is the fact that the effective string correction 1/4 in front of the k(L) term is only

reached asymptotically (see figure 3). The second one is that looking at the data in table 1

and table 2 we see that the linear behaviour as a function of R extends also in the R < 10

region. This definitely disagrees with the effective string prediction which in this region
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Figure 3: Plot of the string tension σ extracted from k(L) as a function of L.
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Figure 4: R dependence of the flux tube width in the R < L region. We also plot for comparison

a straight line with angular coefficient 1/4.

(due to the higher terms in the theta functions) predicts instead a significant depletion of

the flux tube width (see figure 4).

It is interesting to observe that both these behaviours instead agree with a naive

Svetitsky-Yaffe [27] dimensional reduction picture (see. [28]). Indeed, according to this

scheme, the correlation function of two Polyakov loops should behave as the spin-spin

correlator of the 2d Ising model and the combination of plaquette and Polyakov loops used

to measure the flux tube thickness is mapped into the < ǫσσ > correlator of the same

Ising model. As discussed in [28] also in this framework one finds a linear increase of the

(equivalent of the) flux tube width, which however in this dimensional reduction scheme

holds for all values of R. Moreover the coefficient of this linear increase is proportional

to 1/m where m is the mass of the equivalent 2d Ising model and depends on L in a way

which strongly resembles the behaviour reported in figure 3 (see [28]).
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It would be interesting to see if going beyond the gaussian approximation one could

recover this behaviour also in the effective string framework. This would require extending

the calculation reported in the appendix to higher orders of the Nambu-Goto action or

alternatively to adapt to this problem the D-brane approach discussed in [29] to deal

with the whole Nambu-Goto action. Work is in progress to test the feasibility of these

approaches.

A. Derivation of eq. (2.9), (2.11)

A.1 The Green function for mixed boundary conditions

The starting point of our analysis is the Green function for a free bosonic theory on a

cylindric domain. This Green function is the solution of the Laplace equation in a 2d

rectangle with periodic boundary conditions in one direction and Dirichlet conditions in

the other direction. This can be mapped to to an electrostatic problem and solved by the

method of images. We report the result in this appendix for completeness and discuss in

some detail a few of its properties which will later be relevant for the study of the flux

tube thickness.

Let us map the cylinder onto a rectangle of the complex plane centered in the origin

with sizes [−Lx/2, Lx/2] × [−Ly/2, Ly/2]. Let us impose periodic boundary conditions

along the imaginary axis, i.e. for Im (z) = ±Ly/2 and Dirichlet b.c. along the real axis i.e.

for Re (z) = ±Lx/2.

Then the Green function can be written as:

G(z; z0) = − 1

2π
log |f(z, z0)| (A.1)

with:

f(z; z0) =
θ1 [π(z − z0)/2Lx]

θ2 [π(z + z̄0)/2Lx]
(A.2)

where the Jacobi theta functions θ1 and θ2 are defined as:

θ1(z) = 2q
1

4

∞
∑

n=0

(−1)nqn(n+1) sin(2n + 1)z (A.3)

θ2(z) = 2q
1

4

∞
∑

n=0

qn(n+1) cos(2n + 1)z (A.4)

with:

q = eiπτ ; τ = iLy/2Lx

In fact, with this definition, log f is analytic everywhere in the rectangle except in

z = z0 where f(z) = 0 and the Green function diverges logarithmically. For all the

remaining values since log |f | = Re log f (i.e. it is the real part of an analytic function) it

satisfies the Laplace equation:

∆G(z, z0) = 0
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As for the boundary conditions, by using the transformation properties of the

theta functions:

θ1(z + πτ) = −q−1e−2izθ1(z); θ2(z + πτ) = q−1e−2izθ2(z);

one can immediately see that:

G(z + iLy, z0) = G(z, z0)

i.e. that G is periodic along the imaginary axis with period iLy

In order to check that eq (A.1), (A.2) satisfy the Dirichlet conditions along the x axis,

let us set z = Lx/2 + iy. With this choice we have:

G(z; z0) = − 1

2π
log

∣

∣

∣

∣

θ1 [π(iy − z0)/2Lx + π/4]

θ2 [π(iy + z̄0)/2Lx + π/4]

∣

∣

∣

∣

from which, using the identity θ2(z) = θ1(π/2 − z) we immediately obtain:

G(z; z0) = − 1

2π
log

∣

∣

∣

∣

θ1 [π(iy − z0)/2Lx + π/4]

θ1 [π(−iy − z̄0)/2Lx + π/4]

∣

∣

∣

∣

Since the theta functions are real along the real axis, the denominator in the above equation

is the complex conjugate of the numerator and the argument of the logarithm is always

unity for any value of y. In a similar way one can show that the Dirichlet b.c. hold also for

Re z = −Lx/2. The expansion of eq.s (A.1), (A.2) converges very quickly when Ly ≫ Lx .

In this limit the exponentially decreasing terms in G(z, z0) can be neglected and only the

dominant terms in the theta functions give a contribution. However in the opposite limit

Lx ≫ Ly such expression is almost useless. In this regime one should better perform a

modular transformation τ → −1/τ of the above result. In this way one obtains:

G(z; z0) = − 1

2π
log

∣

∣

∣

∣

θ1 [iπ(z − z0)/Ly]

θ4 [iπ(z + z̄0)/Ly]

∣

∣

∣

∣

+
Rez Rez0

LxLy

q = e−2πLx/Ly ;

τ = 2iLx/Ly (A.5)

This expression is equivalent to the above one, but converges well in the Lx ≫ Ly limit.

A.2 The flux tube width

The behaviour of the flux tube width can be extracted from eq. (2.3) performing an ex-

pansion in ǫ. Keeping into account the prefactor σ in the gaussian effective action eq. (2.8)

we see that eq. (2.3) can be rewritten as:

σw2(x, y) = G(z, z + ǫ) (A.6)

In the limit ǫ → 0, using eq.s (A.1), (A.2) and setting Lx = R, Ly = L we obtain:

σw2(z) = − 1

2π
log

π|ǫ|
2R

+
1

2π
log

∣

∣θ2 (π Re z/R) /θ′1
∣

∣ (A.7)

q = e−πL/2R
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This expression converges well when L ≫ R.

In the opposite regime R ≫ L we must use eq. (A.5) which leads to:

σw2(z) = − 1

2π
log

π|ǫ|
L

+
1

2π
log

∣

∣θ4(2πiRe z/L)/θ′1
∣

∣ +
(Re z)2

LR
(A.8)

q = e−π2R/L
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